44 research outputs found

    Improving mechanical properties for extrusion-based additive manufacturing of poly(lactic acid) by annealing and blending with poly(3-hydroxybutyrate)

    Get PDF
    Based on differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, polarizing microscope (POM), and scanning electron microscopy (SEM) analysis, strategies to close the gap on applying conventional processing optimizations for the field of 3D printing and to specifically increase the mechanical performance of extrusion-based additive manufacturing of poly(lactic acid) (PLA) filaments by annealing and/or blending with poly(3-hydroxybutyrate) (PHB) were reported. For filament printing at 210 °C, the PLA crystallinity increased significantly upon annealing. Specifically, for 2 h of annealing at 100 °C, the fracture surface became sufficiently coarse such that the PLA notched impact strength increased significantly (15 kJ m−2). The Vicat softening temperature (VST) increased to 160 °C, starting from an annealing time of 0.5 h. Similar increases in VST were obtained by blending with PHB (20 wt.%) at a lower printing temperature of 190 °C due to crystallization control. For the blend, the strain at break increased due to the presence of a second phase, with annealing only relevant for enhancing the modulus.</jats:p

    Theoretical evaluation of the melting efficiency for the single-screw micro-extrusion process : the case of 3D printing of ABS

    Get PDF
    One of the challenges for single-screw micro-extrusion or additive manufacturing (AM), thus 3D printing, of polymers is controlling the melting efficiency so that energy and equipment costs can be minimized. Here, a numerical model is presented for AM process design, selecting acrylonitrile-butadiene-styrene (ABS) as viscoelastic reference polymer. It is demonstrated that AM melting is different compared to conventional melting due to variation in extrusion dimensions, leading to a different balance in heating by conduction and viscous heat dissipation as caused by the shearing between the melt layers in the associated film layer near the barrel. The thickness of this melt film layer is variable along the screw length, and it is shown that simplified models assuming an overall average value are too approximate. It is highlighted that the screw frequency, pitch angle and compression ratio are important process parameters to control the point of melt finalization. In addition, the power-law index reflecting the shear thinning nature of the polymer melt is showcased as a key parameter. Moreover, AM process results assuming constant and temperature dependent specific heat capacities and thermal conductivities are compared. The current work opens the door for on-line AM process control, addressing all relevant operating and material parameters

    Influence of different stabilization systems and multiple ultraviolet A (UVA) aging/recycling steps on physicochemical, mechanical, colorimetric, and thermal-oxidative properties of ABS

    Get PDF
    Commercially mass-polymerized acrylonitrile–butadiene–styrene (ABS) polymers, pristine or modified by stabilization systems, have been injection molded and repeatedly exposed to ultravilolet A (UVA) radiation, mechanical recycling, and extra injection molding steps to study the impact of such treatments on the physicochemical, mechanical, colorimetric, and thermal-oxidative characteristics. The work focus on mimicking the effect of solar radiation behind a window glass as relevant during the lifetime of ABS polymers incorporated in electrical and electronic equipment, and interior automotive parts by using UVA technique. The accelerated aging promotes degradation and embrittlement of the surface exposed to radiation and causes physical aging, deteriorating mechanical properties, with an expressive reduction of impact strength (unnotched: up to 900%; notched: up to 250%) and strain at break (&gt;1000%), as well as an increase in the yellowing index (e.g., 600%). UV-exposition promotes a slight increase in the tensile modulus (e.g., 10%). The addition of antioxidants (AOs) leads to a limited stabilization during the first UVA aging, although the proper AO formulation increases the thermal-oxidative resistance during all the cycles. Mechanical recycling promotes an increase in strain at break and unnotched impact strength alongside a slight decrease in tensile modulus, due to disruption of the brittle surface and elimination of the physical aging

    Influence of Different Stabilization Systems and Multiple Ultraviolet A (UVA) Aging/Recycling Steps on Physicochemical, Mechanical, Colorimetric, and Thermal-Oxidative Properties of ABS

    Get PDF
    Commercially mass-polymerized acrylonitrile–butadiene–styrene (ABS) polymers, pristine or modified by stabilization systems, have been injection molded and repeatedly exposed to ultraviolet A (UVA) radiation, mechanical recycling, and extra injection molding steps to study the impact of such treatments on the physicochemical, mechanical, colorimetric, and thermal-oxidative characteristics. The work focus on mimicking the effect of solar radiation behind a window glass as relevant during the lifetime of ABS polymers incorporated in electrical and electronic equipment, and interior automotive parts by using UVA technique. The accelerated aging promotes degradation and embrittlement of the surface exposed to radiation and causes physical aging, deteriorating mechanical properties, with an expressive reduction of impact strength (unnotched: up to 900%; notched: up to 250%) and strain at break (>1000%), as well as an increase in the yellowing index (e.g., 600%). UV-exposition promotes a slight increase in the tensile modulus (e.g., 10%). The addition of antioxidants (AOs) leads to a limited stabilization during the first UVA aging, although the proper AO formulation increases the thermal-oxidative resistance during all the cycles. Mechanical recycling promotes an increase in strain at break and unnotched impact strength alongside a slight decrease in tensile modulus, due to disruption of the brittle surface and elimination of the physical aging.This research was funded by the European Union’s Horizon 2020 Research and Innovation Program, grant number 730308

    Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend developed for extrusion- based additive manufacturing

    Get PDF
    Bio-material polylactic acid and poly(butylene adipate-co-terephthalate) were blended to achieve increased ductility of the blend. Cloisite was added to improve the stiffness of the blend. The blends were made into filament suitable for extrusion-based additive manufacturing. Melt flow index of the filament and mechanical properties of the printed bars were tested. Preliminary results showed that the melt flow index increases significantly with cloisite and the modulus of polylactic acid/poly(butylene adipate-co-terephthalate) improved slightly. The notched impact strength of the blend increased with increasing content of cloisite, and it increased significantly after annealing, especially for blends without cloisite

    Propriedades Mecânicas e Térmicas e Morfologia de Compósitos de Poliuretano Termoplástico (TPU) com Argila

    Get PDF
    In this study, thermoplastic polyurethane (TPU) composites were prepared with different nanoclay contents (1, 3 and 10 wt%). The nanoclay Cloisite ®30B (C30B) was dispersed in the TPU matrix by melt processing using a twin-screw extruder. The synthesis method of TPU involved the two-step bulk polymerization of polyesterpolyol and 4,4’ diphenylmethanediisocyanate with butane-1,4-diol as the chain extender. The dispersion of the nanoclay particles and its effect on the mechanical and thermal properties of the composites was investigated. The characterization of TPU/nanoclay composites was carried out by means of scanning electron microscopy, energy dispersion microanalysis and X ray diffraction. The mechanical characterization was performed through determination of the tensile strength. The TPU 3 wt% composite showed the best improvement with increases in stress and tensile at break (28% and 35%, respectively), compared to the neat TPU (sample without nanoclay). The differential scanning calorimetry and thermogravimetry analyses for composites indicated that the nanoclay did not affect significantly the glass transition, melt, and degradation temperatures of the polymeric matrix, but reduces the molecular mobility.  http://dx.doi.org/10.18226/23185279.v3iss2p50Neste trabalho, compósitos de elastômero termoplástico de poliuretano (TPU) foram preparados com diferentes teores de argila (1, 3 e 10% m/m). A argila Cloisite ®30B (C30B) foi incorporada na matriz de TPU via processamento por fusão em uma extrusora de dupla rosca. O método de síntese do TPU foi a polimerização em duas etapas do poliol poliéster e do di-isocianato de 4,4’ difenil metano com butano-1,4-diol como extensor de cadeia. A dispersão da argila e seu efeito sobre as propriedades mecânicas e térmicas dos compósitos foram investigadas. A caracterização dos compósitos de TPU com argila foi realizada por meio das análises de microscopia eletrônica de varredura, microanálise de energia dispersiva e difração de raios X. As propriedades mecânicas foram avaliadas através da resistência à tração. O TPU com 3% m/m de argila apresentou os melhores resultados com aumento nos valores de tensão e alongamento na ruptura (28% e 35%, respectivamente), quando comparado ao TPU puro (amostra sem argila). As análises de calorimetria diferencial de varredura e termogravimetria, para os compósitos, indicaram que a argila não afetou significativamente as temperaturas de transição vítrea, de fusão e de degradação da matriz polimérica, mas restringe o movimento molecular.  http://dx.doi.org/10.18226/23185279.v3iss2p5

    Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend development for extrusion-based additive manufacturing

    Get PDF
    Bio-material polylactic acid and poly(butylene adipate-co-terephthalate) were blended to achieve increased ductility of the blend. Cloisite was added to improve the stiffness of the blend. The blends were made into filament suitable for extrusion-based additive manufacturing. Melt flow index of the filament and mechanical properties of the printed bars were tested. Preliminary results showed that the melt flow index increases significantly with cloisite and the modulus of polylactic acid/poly(butylene adipate-co-terephthalate) improved slightly. The notched impact strength of the blend increased with increasing content of cloisite, and it increased significantly after annealing, especially for blends without cloisite. Ke

    Tuning thermal, morphological, and physicochemical properties of Thermoplastic Polyurethanes (TPUs) by the 1,4-butanediol (BDO)/dipropylene glycol (DPG) ratio

    Get PDF
    Thermoplastic polyurethanes (TPUs) are versatile polymers presenting a broad range of properties as a result of their countless combination of raw materials—in essence, isocyanates, polyols, and chain extenders. This study highlights the effect of two different chain extenders and their combination on the structure–property relationships of TPUs synthesized by reactive extrusion. The TPUs were obtained from 4,4-diphenylmethane diisocyanate (MDI), polyester diols, and the chain extenders 1,4-butanediol (BDO) and dipropylene glycol (DPG). The BDO/DPG ratios studied were 100/0, 75/25, 50/50, 25/75, and 0/100 wt.%. The TPUs were characterized by size exclusion chromatography (SEC), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), UV–vis spectroscopy, and physical-mechanical properties. The results indicate that DPG promotes compatibility between rigid (HS) and flexible (SS) segments of TPUs. Consequently, increasing DPG content (>75 wt.%) reduced the organization of the rigid segments and the degree of phase separation, increasing the polydispersity of the interdomain distance and the transparency in the UV–visible spectrum of the TPUs. Furthermore, increasing DPG content also reduced the amount of hydrogen bonds present in the rigid phase, reducing or extinguishing its glass transition temperature (TgHS) and melting temperature (Tm), and increasing the glass transition temperature of the flexible phase (TgSS). Therefore, increasing DPG content leads to a deterioration in mechanical properties and hydrolysis resistance
    corecore